ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique

APPEL À
CONTRIBUTION
Masses de données hétérogènes
En savoir plus >>
Autres revues >>

Revue d'Intelligence Artificielle

0992-499X
Revue des Sciences et Technologies de l'Information
 

 ARTICLE VOL 22/1 - 2008  - pp.63-85  - doi:10.3166/ria.22.63-85
TITRE
Résolution du problème de la patrouille multi-agent en utilisant des colonies compétitives de fourmis

RÉSUMÉ
Patrouiller dans un environnement implique une équipe d'agents dont le but consiste à visiter continuellement et aussi fréquemment que possible les lieux les plus pertinents. Afin d'obtenir des performances optimales, il est alors primordial que les agents coordonnent leurs actions. De nombreux domaines peuvent être concernés par ce problème, comme la robotique, la simulation ou les jeux vidéo. Nous adoptons dans cet article une approche d'optimisation basée sur les colonies de fourmis pour traiter ce problème. Deux algorithmes sont proposés, dans lesquels des colonies de fourmis sont engagées dans une compétition pour découvrir la meilleure stratégie de patrouille multi-agent. Les résultats expérimentaux montrent que, sur quatre des six graphes étudiés, l'une de nos techniques est significativement meilleure que la technique d'apprentissage par renforcement proposée par Santana.


ABSTRACT
Patrolling an environment involves a team of agents whose goal usually consists of continuously visiting its most relevant areas as frequently as possible. For such a task, agents have to coordinate their actions in order to achieve optimal performance. A wide range of applications can be dealt with this problem, from computer network management to vehicle routing. The Ant Colony Optimization is adopted here as the solution approach to this problem. Two novel ACO algorithms are proposed here, in which several ants' colonies try to discover the best multi-agent patrolling strategy. Experimental results show that, for four out of the six evaluated graphs, one of our techniques significantly outperforms the reinforcement learning technique proposed by Santana, irrespective of the number of the involved patrolling agents.


AUTEUR(S)
Fabrice LAURI, François CHARPILLET

MOTS-CLÉS
patrouille multi-agent, colonies de fourmis, ACO.

KEYWORDS
multi-agent patrolling, ACO.

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (387 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
Lavoisier