ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique

APPEL À
CONTRIBUTION
Masses de données hétérogènes
En savoir plus >>
Autres revues >>

Revue d'Intelligence Artificielle

0992-499X
Revue des Sciences et Technologies de l'Information
 

 ARTICLE VOL 28/2-3 - 2014  - pp.245-270  - doi:10.3166/ria.28.245-270
TITRE
Fouille de motifs séquentiels pour la découverte de relations entre gènes et maladies rares

TITLE
Sequential pattern mining in order to discover relations between genes and rares diseases

RÉSUMÉ
Orphanet est un organisme dont l’objectif est notamment de rassembler des collections d’articles traitant de maladies rares. Cependant, l’acquisition de nouvelles connaissances dans ce domaine est actuellement réalisée manuellement. Dès lors, obtenir de nouvelles informations relatives aux maladies rares est un processus chronophage. Permettre d’obtenir ces informations de manière automatique est donc un enjeu important. Dans ce contexte, nous proposons d’aborder la question de l’extraction de relations entre gènes et maladies rares en utilisant des approches de fouille de données, plus particulièrement de fouille de motifs séquentiels sous contraintes. Nos expérimentations montrent l’intérêt de notre approche pour l’extraction de relations entre gènes et maladies rares à partir de résumés d’articles de PubMed.


ABSTRACT

Orphanet provides an international web-based knowledge portal for rare diseases including a collection of review articles. However, reviews and literature monitoring are manual. Thus, new documentation about a rare disease is a time-consuming process and automatically discovering knowledge from a large collection of texts is a crucial issue. This context represents a strong motivation to address the problem of extracting gene–rare diseases relationships from texts. In this paper, we tackle this issue with a cross-fertilization of information extraction and data mining techniques (sequential pattern mining under constraints). Experiments show the interest of the method for the documentation of rare diseases.



AUTEUR(S)
Nicolas BÉCHET, Peggy CELLIER, Thierry CHARNOIS, Bruno CRÉMILLEUX

MOTS-CLÉS
fouille de données, motifs séquentiels, extraction d’information, patrons linguistiques, maladies rares

KEYWORDS
data mining, sequential pattern, information extraction, rare diseases

LANGUE DE L'ARTICLE
Français

 PRIX
• Abonné (hors accès direct) : 7.5 €
• Non abonné : 15.0 €
|
|
--> Tous les articles sont dans un format PDF protégé par tatouage 
   
ACCÉDER A L'ARTICLE COMPLET  (498 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
Lavoisier