ACCUEIL

Consignes aux
auteurs et coordonnateurs
Nos règles d'éthique

APPEL À
CONTRIBUTION
Masses de données hétérogènes
En savoir plus >>
Autres revues >>

Revue d'Intelligence Artificielle

0992-499X
Revue des Sciences et Technologies de l'Information
 

 ARTICLE VOL 17/1-3 - 2003  - pp.11-11
TITRE
Knowledge Discovery in Microarray Gene Expression Data

ABSTRACT
DNA Microarrays are revolutionizing molecular biology, allowing simultaneous analysis of many thousands of genes. Microarray hold the promise of important applications, including creating novel, genetic-based diagnostic tests, finding new molecular targets for therapy, and developing personalized treatments. Microarrays allow analysis of dynamic processes and deeper insight into biological pathways. However, the large number of genes and a typically small number of samples, present unique challenges for DNA microarray data analysis. We discuss issues in normalization of microarray data, selecting the best set of genes for classification and clustering, randomization techniques, and building classification and clustering models. We illustrate these processes using a number of software tools and show new results with potential biological significance.

AUTEUR(S)
Gregory PIATETSKY-SHAPIRO

KEYWORDS
DNA, Microarrays, molecular, biology, clustering.

LANGUE DE L'ARTICLE
Français

 PRIX
GRATUIT
   
ACCÉDER A L'ARTICLE COMPLET  (68 Ko)



Mot de passe oublié ?

ABONNEZ-VOUS !

CONTACTS
Comité de
rédaction
Conditions
générales de vente

 English version >> 
Lavoisier