Vous trouverez ci-dessous les références de l’article :

Simulation comportementale à base d’agents de la dynamique du marché boursier. Modèle cognitif de l’investisseur

Zahra Kodia, Lamjed Ben Said, Khaled Ghédira, Revue d’intelligence artificielle 2011, 25 (1)



Arifovic J., « The behavior of the exchange rate in the genetic algorithm and experimental economies », Journal of Political Economy, vol. 104, p. 510-541, 1996.

Beltratti A., Margarita S., Terna P., Neural Networks for Economic and Financial Modelling, Thomson Computer Press, 1997.

BenSaid L., A. Drogoul T. B., « Agent-based interaction analysis of consumer behavior », First International Joint Conference on Autonomous Agents and Multi-Agent Systems AAMAS’ 2002, Bologne, Italy, p. 183-189, 2002.

Bensimhon L., Excès de confiance et mimétisme informationnel sur les marchés d’actions, Thèse de doctorat, Université Paris 1 Panthéon Sorbonne, France, 2006.

Black F., Scholes M., « The Pricing of Options and Corporate Liabilities », Journal of Political Economy, vol. 81, p. 637-654, 1973.

Bray M., « Learning, estimation, and the stability of rational expectations », Journal of Economic Theory, vol. 26, n° 2, p. 318-339, 1982.

Brooks R., « A Robust Layered Control System For a Mobile Robot », IEEE Journal of Robotics and Automation, vol. 2, p. 14-23, 1986.

Derveeuw J., Beaufils B., Brandouy O., Mathieu P., « L’apport des SMA à la modélisation des marchés financiers », Revue d’Intelligence Artificielle, vol. 21, p. 617-641, 2007.

Fama E., « Efficient capital markets : A review of theory and empirical work », Journal of Finance, vol. 25, p. 383-417, 1970.

Ferber J., Les systèmes multi-agents, vers une intelligence collective, InterEditions, 1995.

Ferber J., Gutknecht O., Michel F., « From Agents to Organizations : an Organizational View of Multi-Agent Systems », Agent-Oriented Software Engineering (AOSE) IV, P. Giorgini, Jörg Müller, James Odell, eds, Melbourne, vol. 6, p. 214-230, 2004.

Gode D., Sunder S., « Allocative Efficiency Of MarketsWith Zero Intelligence Traders », Journal Of Political Economy, vol. Ci, p. 119-137, 1993.

Grossman S., Stiglitz J., « On the impossibility of informationally efficient markets », American Economic Review, vol. 70, p. 393-408, 1980.

Gutknecht O., Ferber J., « The MadKit Agent Platform Architecture », Agents Workshop on Infrastructure for Multi-Agent Systems, p. 48-55, 2000.

Harrison M., Pliska S., « Martingales and stochastic integrals in the theory of continuous trading », Stochastic Process Appl, vol. 11, p. 215-260, 1981.

Hoffmann A., Jager W., Eije J. V., « Social Simulation of Stock Markets : Taking It to the Next », Level Journal of Artificial Societies and Social Simulation, 2007.

Jegadeesh N., Titman S., « Returns to Buying Winners and Selling Losers : Implication for Stock Market Efficiency », Journal of Finance, vol. 48, p. 65-91, 1993.

Karaken J., Wallace N., « On the indeterminacy of equilibrium exchange rates », Quarterly journal of economics, vol. 96, p. 207-222, 1981.

Kodia Z., BenSaid L., « Multi-agent Simulation of Investor Cognitive Behavior in Stock Market », 7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS), Salamanca, Spain, p. 90-99, 2009a.

Kodia Z., BenSaid L., Ghédira K., « Multi-agent based pricing : a virtual stock market simulation », 8ème Conférence Internationale de Modélisation et Simulation (MOSIM’2010), Hammamet, Tunisia. Proceedings on CD, 2009b.

Kodia Z., BenSaid L., Ghédira K., « Stylized facts study through a multi-agent based simulation of an artificial stock market », in K. S. C. H. P. M. P. Pellizzari, A. Consiglio (ed.), Artificial Economics 2010, Springer Lecture Notes in Economics and Mathematical Systems (LNEMS), Treviso, Italy (A paraitre), 2010.

Lamba H., Seaman T., « Rational expectations, psychology and inductive learning via moving thresholds », Physica A, vol. 387, p. 3904-3909, 2008.

LeBaron B., « Agent-based computational finance : suggested readings and early research », Journal of Economic Dynamics and Control, vol. 24, p. 679-702, 2000.

Lettau M., « Explaining the facts with adaptive agents : the case of mutual fund flows », Journal of Economic Dynamics and Control, vol. 21, p. 1117-1148, 1997.

Lettau M., Campbell J., Dispersion and Volatility in Stock Returns : An Empirical Investigation, NBERWorking Paper n° W7144, Harvard University - Department of Economics; National Bureau of Economic Research (NBER), 1999.

Margarita S., Beltratti A., « Stock Prices and Volume in an Artificial Adaptive Stock Market », IWANN ’93 Proceedings of the International Workshop on Artificial Neural Networks : New Trends in Neural Computation Springer-Verlag, London, UK, p. 714-719, 1993.

Mathieu P., Brandouy O., « A Generic Architecture for Realistic Simulations of Complex FinancialDynamics », 8th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS), Salamanca, Spain, p. 185-197, 2010.

Milgram S., « The small world problem », Psychology Today, vol. 1, p. 60-67, 1967.

Pochart B., Bouchaud J., « Skewness and multifractality in financial time series, applications to option smiles », Quantitative Finance, vol. 2, p. 303-314, 2002.

Routledge B., Artificial selection : genetic algorithms and learning in a rational expectations model, Technical report, GSIA, Carnegie Mellon, Pittsburgh, Penn, 1994.

Shleifer A., Inefficient Markets. An Introduction to Behavioral Finance, Oxford University Press, 2000.

Tsay S., Analysis of Financial Time Series, second edition edn, Wiley, Financial Engineering, 2002.

Tversky A., Kahneman D., « The framing of decisions and psychology of choice », Science, vol. 211, p. 453-458, 1981.